Python data and runfile modules
Python. Way of the future.
The python modules mce_data.py and mce_runfile.py provide roughly the same functionality that mas_data.pro and mas_runfile.pro provide for IDL.
Contents
[hide]mce_data.py
This provides a way to load SMALL frame data files into python. SMALL means less than 50000 frames.
Basic usage
Make sure python can find mce_data.py and mce_runfile.py. $MAS_PYTHON should be in your PYTHONPATH environment variable.
mce@mce-ubc-2:~$ export PYTHONPATH=$PYTHONPATH:$MAS_PYTHON
In python, import the 'mce_data' module and create a SmallMCEFile object:
>>> from mce_data import * >>> fn = '/data/cryo/current_data/data002' >>> f = SmallMCEFile(fn)
To suppress loading of the runfile, or override the runfile name, use one of these:
>>> f = SmallMCEFile( fn, runfile=False) >>> f = SmallMCEFIle( fn, runfile='template_runfile.run')
Then load the data like this:
>>> d = f.Read() 18600000 items requested but only 37200 read
The data member of d is a 2d array, [n_detectors, n_frames]:
>>> d.data.shape (328, 100)
The list of rows and columns associated with the 328 detectors is available through col_list and row_list:
>>> d.col_list [8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13, 14, 15, ... 8, 9, 10, 11, 12, 13, 14, 15]
To display a pixel's values in all the data frames of a file:
>>> d.data[col+row*8]
Or to see pixel index i:
>>> d.data[i,:]
To display all pixels in frame f:
>>> d.data[:,f]
The data from the first frame header is available in the header member:
>>> d.header {'status': 2052, 'data_rate': 47, 'userfield': 0, 'num_rows_reported': 41, 'runfile_id': 1231969044, 'row_len': 64, 'header_version': 6, 'rc_present': [False, True, False, False], 'address0_ctr': 23142826, 'num_rows': 41, 'ramp_value': 0, 'frame_counter': 0, 'sync_box_num': 0, 'ramp_addr': 0}
Raw frame data
To get raw frames (including header and checksum), pass "raw_frames=True" to the Read call:
>>> raw = f.Read(raw_frames=True) 55000000 items requested but only 110000 read >>> raw.shape (100, 1100)
Then you can look at, e.g., the checksum:
>>> raw[:,1099] >>> dd[:,1099] array([918158926, 918144283, 918156148, 918156615, 918153934, 918159205, ... 918146379, 918145339, 918158232, 918146376], dtype=int32)
Force row/column ordering
To reformat the d.data array so that its indices are (row, column, frame), pass "row_col=True" to Read:
>>> d = f.Read(row_col=True) >>> d.data.shape (33, 32, 100)
Then to see frame k:
>>> d.data[:,:,k]
Extracting fields from mixed mode data
The MCE signal names, for mce_data purposes, are:
error - co-added error (reference mode 0) fb - feedback in sq1 DAC units (reference mode 1) fb_filt - filtered feedback (reference mode 2) fj - flux jump counter
For mixed modes, the default is to extract the feedback or filtered feedback signal by default. To extract an alternate signal, pass "field=..." to the Read call:
>>> d = f.Read(field='fj') >>> print d.data array([[0,0,0,0,1,0,0,0,0, ...
It is possible to extract a set of fields simultaneously, using the "fields=" option in the Read call. This will override the "field=" option. The extracted fields appear in a dictionary in d.data.
>>> d = f.Read(fields=['fj', 'fb_filt']) >>> print d.data['fj'] ... >>> print d.data['fb_filt'] ...
You can extract all fields by passing "fields='all'":
>>> d = f.Read(fields='all') >>> print d.data['fj'] ... >>> print d.data['fb_filt'] ...
To force the bitfield extraction code to assume a particular data_mode, pass "data_mode=..." to Read.
>>> d = f.Read(data_mode=10, field='fb_filt')
mce_runfile.py
Load a runfile
>>> from mce_runfile import * >>> runfile_name = '/data/cryo/current_data/1220531790_dat.run' >>> rf = MCERunfile(runfile_name)
Simple data
Recall that the structure of runfiles is such that a line of data has an address defined by its 'block' and 'key' (where the key is the tag + specifiers...). The contents of rf include a dictionary of dictionaries of all the block / key pairs. For example:
>>> print rf.data['HEADER']['RB rc1 data_mode'] 00000010 >>> print rf.data['SQUID']['SQ_tuning_dir'] 1220510497
However, the member function "Item" allows us to repackage the runfile data by specifying a data type ('string', 'int', 'float') and whether or not we expect an array or a single value. For example:
>>> print rf.Item('HEADER', 'RB rc1 data_mode') ['00000010'] >>> print rf.Item('HEADER', 'RB rc1 data_mode', type='int') [10] >>> print rf.Item('HEADER', 'RB rc1 data_mode', type='int', array=False) 10 >>> print rf.Item('HEADER', 'RB rc1 data_mode', type='float') [10.0]
Two-dimensional data
Some runfile entries are really 2d arrays, entered row by row. For example, in the 'IV' block there are per-column entries for responsivity:
<IV> ... <Responsivity(W/DACfb)_C0> 1.92290e-16 1.92119e-16 0.00000 1.93100e-16 1.92978e-16 1.89769e-16 1.91119e-16 ... <Responsivity(W/DACfb)_C1> 0.00000 1.82838e-16 0.00000 1.84197e-16 1.84822e-16 1.84447e-16 1.83693e-16 ... <Responsivity(W/DACfb)_C2> 1.89962e-16 1.88649e-16 0.00000 1.85339e-16 1.84462e-16 1.82965e-16 1.84045e-16 ... ... </IV>
These can be extracted at once if you pass a printf-style format string to the member function Item2d:
>>> a = rf.Item2d('IV', 'Responsivity(W/DACfb)_C%i', type='float') >>> print len(a) 32 >>> print len(a[0]) 33 >>> print a[2][1] 1.88649e-16
(i.e. a[2][1] is the responsivity for column 2, row 1.)
Some MCE data are spread across readout cards... e.g. adc_offset is stored in rc# adc_offset#. To accumulate all of these into a single array, use Item2dRC, passing the format in a way such that it can be evaluated first with the RC number and then with the column index... :
>>> a = rf.Item2dRC('HEADER', 'RB rc%i adc_offset%%i', type='int') >>> len(a) 32 >>> len(a[0]) 41