	Physics and Astronomy Dept.
	BNB

	UBC
	03/12/09

	Multi-Channel Electronics
	SC2_ELE_S580_515

Multi-Channel Electronics Command Descriptions

Revision History:

	Rev
	Date
	Description of change

	1.0
	2007-10-09
	MA/added the table to 09/10/07 version

	1.1
	2007-10-18
	BB. Added placeholders for newly supported commands.

	1.2
	2008-01-30
	added scratch and support for slot_id and card_type

	1.3
	2008-05-16
	MA: Updated readout-card command descriptions, references, summary, section 4. Updated command format to not refer to DAS/MAS options as they may change. Added firmware revision information.

	1.4
	2008-05-20
	BB: Added content that I had been working on in my local copy, in CVS. Also
BB: Re-integrated information that had been deleted in the update from 1.2 to 1.3. This information has now been reviewed, and is being edited as agreed upon by BB/MA.
BB: Added firmware revision columns for all commands

BB: Added const_mode and const_data commands for address card.

BB: Updated the ‘Command Format’ section so that it is current
MA: added servo_mode per column, resolution for gainpid, details for fw_rev, data_mode and captr_raw commands.
MA: merged rcs commands with single-rc commands

	1.5

	20080630
	MA added row_dly minimum=4
Added a note about st and go command only supported for ret_dat so far.

	1.6
	20091005
	MA/BB added following commands: num_rows_reported, num_cols_reported, cards_present, cards_to_report, rcs_to_report_data, stop_dly, bias_start, data_mode 10 to 12, readout_col_index, readout_priority.

	1.7
	20091113
	BB: Added the i_clamp_val command and added a note to the const_mode command. Also added run_id and user_writable commands to the clock card section.

	1.8
	20100112
	BB: Amended i_clamp_val, and added mls_sequence_len, mls_data, mls_addr.

1. Summary
This document provides descriptions for commands that can be issued to the Multi-channel Electronics (MCE). A pair of fibre optic cables connects the MCE to a PC that has a PCI ARC-64 card installed. The PC runs the data acquisition software called DAS (developed at ATC for SCUBA-2 project) or MAS (developed at UBC for non-SCUBA-2 projects using MCE). The user would use MAS or DAS environment to issue commands to the MCE. In DAS, the MCE commands and their encodings are listed in a file called mce.xml while in MAS, such information are in mce.cfg (as of 2008-05-16).
References

[1] SCUBA2 Bus Backplane ISA, SC2_ELE_S580_511

[2] MCE Firmware Block Diagrams: SC2/ELE/S563/100, SC2/ELE/S563/200, SC2/ELE/S563/201, SC2/ELE/S563/300, SC2/ELE/S563/400, SC2/ELE/S563/500.

[3] SCUBA2 Data Acquisition Software Overview, Xiaofeng Gao, sc2-sof-s200-014-v1.pdf
[4] SCUBA-2 Data Acquisition to Data Processing Interface, Dennis Kelly, sc2-sof-s200-008rev.pdf
[5] Address-Card Technical Description, SC2_ELE_S584_501

[6] Bias-Card Technical Description, SC2_ELE_S583_501
[7] Clock-Card Technical Description, SC2_ELE_S581_501
[8] Readout-Card Technical Description, SC2_ELE_S582_501
2. Command Format

Commands are issued to the MCE from a PC with data acquisition software installed. At the time of writing, two types of data acquisition software exist: DAS and MAS. For both, the nominal command format is the same, but each requires slightly different setup routines before a user can send commands to the MCE.
2.1 DAS

To initiate DAS for commanding the MCE, a user must run two setup scripts:
> cd das

> source dassetup
> das_init start
Following these, a user can issue commands the MCE using the following command format:

> mcecmd <logfile> <action> <card_address> <parameter_id> <values>
i.e. > mcecmd logfile wb cc led 7
2.2 MAS

To initiate MAS for commanding, a user must issue the following command:
> mce_cmd -i
Following this, a user can issue commands the MCE using the following command format:

> <action> <card_address> <parameter_id> <values>
i.e. > wb cc led 7
2.3 The <action> Field
In the MCE command formats for DAS and MAS shown above, the <action> field can take the following values:

· wb: write block – used to write values to registers in the MCE
· rb: read block – used to read values from registers in the MCE

· go: go – used to start a process in the MCE that requires several wishbone transactions (i.e. takes and extended period of time)

· rs: reset – used to issue commands for which replies must be returned by the MCE before executing the original command

· st: stop – used to stop a process that was started with the GO moniker. Note that “st” is implemented for a ret_dat commands as of 20080630.
2.4 The <card_address> Field
In the MCE command formats for DAS and MAS shown above, the <card_address> field can take the following values. Each command targets either a particular card or a group of cards:
Single Cards:

· psc: Power Supply Card
· cc: Clock Card

· rc1: Readout Card 1

· rc2: Readout Card 2

· rc3: Readout Card 3

· rc4: Readout Card 4

· bc1: Bias Card 1

· bc2: Bias Card 2

· bc3: Bias Card 3

· ac: Address Card

Card Groups:

· rcs: All Readout Cards

· bcs: All Bias Cards

· sys: All Cards

2.5 The <parameter_id> Field

In the MCE command formats for DAS and MAS shown above, the <parameter_id> field can take the values that are outlined in the section below.
Command Descriptions

The following table is a summary of commands that can be issued to the MCE. The commands are divided into sections, depending on what cards may be addressed. Note that RS- and GO-type commands have special reply-data – which are not listed in the “Reply Data” columns below. Note also that each of the card types (i.e. Address/ Bias/ Readout/ Clock Cards) in the MCE run unique firmware. The “firmware revision” column indicates the version the particular command is supported.
2.6 General Card Commands
These commands can be issued to any card in the MCE (cc, rc1 to rc4, bc1, bc2, bc3, ac), except the Power Supply Card. Dark-shaded rows indicate commands that remain to be implemented as of 16 May 2008.

	Parameter ID
	Register Address
	Possible Actions
	Command Parameters
	Reply Data
	Description
	Firmware revision

	fpga_temp
	0x91
	rb
	N/A
	<fpga temperature>
	Read the FPGA temperature of a card.
	All

	card_temp
	0x92
	rb
	N/A
	<card temperature>
	Read the card temperature from a IC sensor
	All

	card_id
	0x93
	rb
	N/A
	<card id>
	Read Card ID
	All

	card_type
	0x94
	rb
	N/A
	<card type>
	Request Card Type:

· Card Type 0: AC

· Card Type 1: BC

· Card Type 2: RC

· Card Type 3: CC
· Card Type 4: PSUC
	All

	slot_id
	0x95
	rb
	N/A
	<slot id>
	Request Slot ID.
	All

	fw_rev
	0x96
	rb
	N/A
	<RRrrBBBB>
	Read firmware revision where the format in hex is RRrrBBBB

· RR: major revision number

· rr: minor revision number

· BBBB: build number
	All

	dip
	0x97
	rb
	N/A
	<dip-switch status>
	Request DIP-switch status
	

	led
	0x99
	wb, rb
	<status>
	<status>
	Read/write the LEDs status. When writing to the LEDs, the value written is XOR’ed with the current value of the LED status, to produce the new status.
	All

	scratch
	0x9A
	wb, rb
	<word0>

to <word7>
	<word0>

to <word7>
	These are read/write registers to be used for arbitrarily purposes. An example is to use one to detect undesired reset of MCE.
	All

	vfy_eeprom
	0x42
	wb, rb
	<1 = verify>
	
	Trigger a comprehensive test of the EEPROM on any/all cards it is addressed to
	

	clr_error
	0x43
	wb, rb
	<1 = reset>
	
	Clear error codes that have been recorded on a card.
	

	resync
	N/A

	wb, rb
	<1 = reset>
	
	Tell the targeted card to re-synchronize the start of its internal frame structure with the reception of the next Sync pulse.
	

	eeprom
	0x41
	wb, rb
	<word 0>

<word 1>

…

<word n-1>
	<word 0>

<word 1>

…

<word n-1>
	Read/write ‘n’ 32-bit words to the EEPROMs on any/all cards starting from the specified starting address (see EEPROM Start).
	

	eeprom_srt
	0x44
	wb, rb
	<address>
	<address>
	Specify an address in EEPROM memory where a subsequent instruction will write to or read from. The EEPROMs are AT25128A and are 128 KB in size. A 128 KB device holds 4096 32-bit words, so physical addresses for the EEPROM will range between 0x0000 and 0x1000.
	

2.7 “sys” Commands

These commands affect the timing of the system – which means that they must be issued to all cards in the MCE at the same time. They are addressed to every card in the card cage by using the ‘sys’ card address.

	Parameter ID
	Register Address
	Possible Actions
	Command Parameters
	Reply Data
	Description
	Firmware revision

	row_len
	0x30
	wb, rb
	<# clock cycles>
	<# clock cycles>
	Specify the number of 50MHz clock cycles that are spent per row during multiplexing. Default = 64.
	All

	num_rows
	0x31
	wb, rb
	<# rows>
	<# rows>
	Specify the number of rows to be multiplexed (that there in a detector array). Default = 41.
	All

	num_rows_reported
	0x55
	wb, rb
	<number of rows>
	<number of rows>
	Specify the number of rows of data that are reported in a data packet. This parameter is set in conjunction with the readout_row_index (for Readout Cards). See also num_cols_reported, readout_col_index. Default = 41.
	4.0.0+

	num_cols_reported
	0xAD
	wb
	<# of columns>
	<# of columns>
	Specify the number of columns of data that are reported in a data packet. This parameter is set in conjunction with the readout_col_index (a Readout Card command). See also num_rows_reported, readout_row_index. Default = 8.
	5.0.0+

[image: image1.emf]One Frame Period

…

MUX Row ‘0’ On

row_dly

min=4

row_len

sample_dly

min=0

sample_num

min=0

fb_dly

min=7

Readout Card Not Sampling

Readout Card

Sampling

Row 0 Row 1 Row (num_rows-1)

MUX Off

Readout Card Not Sampling

Readout Card

Sampling

Readout Card Not Sampling

Readout Card

Sampling

Sync Pulses occur in the 50 MHz clock cycle preceding the start of a new frame period Sync Pulse

1st Stage FB For

Row ‘1’

1st Stage FB For

Row ‘num_rows-2’

1st Stage FB For

Row ‘num_rows-1’

MUX Row ‘1' On MUX Row ‘num_rows-1’ Selected MUX Off MUX Off

1st Stage FB For

Row ‘0’

1st Stage FB For

Row ‘num_rows-1’

Figure 2. Frame Timing Structure (Reference: \scuba2_repository\doc\ISA\frame_timing_structure.vsd, CVS version 1.6).

Figure 2, above, shows the frame-timing structure of the MCE. All the commands that affect timing in the MCE are listed in red. ‘row_len’ and ‘num_rows’ are addressable to all cards in the MCE using the ‘sys’ moniker. ‘sample_dly’, ‘sample_num’, ‘fb_dly’ are addressable to ‘rcs,’ and ‘row_dly’ is addressable to ‘ac’.
“psc” Commands

These commands are for the Power Supply Card only. The Power Supply Card firmware blocks are integrated in the Clock Card firmware as a virtual card. This is why the firmware revision refers to the Clock Card.
	Parameter ID
	Register Address
	Possible Actions
	Command Parameters
	Reply Data
	Description
	Firmware revision

	brst
	0x60
	rs
	1
	N/A
	Cause the Power Supply Card to assert the RBst line (active low) on the bus backplane to reset all FPGA devices in the MCE. Asserting this signal causes all FPGA devices in the MCE to be reconfigured, including the Clock Card FPGA. The Clock Card FPGA will be reconfigured by the Factory reconfiguration device.
	2.0.c+

	cycle_pow
	0x61
	rs
	1
	N/A
	Cause the Power Supply Card to cycle power to the MCE. All power supplies will be switched off and then back on again in proper sequence. This will cause all FPGA devices in the MCE to be reconfigured, including the Clock Card FPGA. The Clock Card FPGA will be reconfigured by the Factory configuration device.
	2.0.c+

	psc_status
	0x63
	rb
	N/A
	<status word 0>

<status word 1>

…

<status word 35>
	Report power-supply-card status information.
	2.0.c+

	cut_pow
	0x62
	rs
	1
	N/A
	Cause the Power Supply Card to turn off all power bricks.
	2.0.c+

“cc” Commands

These commands are for the Clock Card only. Dark-shaded rows indicate commands that remain to be implemented as of 16 May 2008.

	Parameter ID
	Register Address
	Possible Actions
	Command Parameters
	Reply Data
	Description
	Firmware revision

	config_app
	0x52
	rs
	1
	N/A
	Cause the Clock Card’s application-configuration device to load its configuration data into the Clock Card FPGA.
	3.0.1+

	config_fac
	0x51
	rs
	1
	N/A
	Cause the Clock Card’s factory-configuration device to load its configuration data into the Clock Card FPGA.
	3.0.1+

	ret_dat_s
	0x53
	wb, rb
	<start sequence #>

<end sequence #>
	<start sequence #>

<end sequence #>
	Specify the starting and ending sequence-numbers for data frames that the MCE is to return. Each frame of data will have a sequence number affixed to it. Sequence numbers will be assigned to data frames in increasing order, beginning with the starting sequence number, and finishing with the ending sequence number. Both parameters may range between 0x00000000 and 0xFFFFFFFF. If both starting and ending sequence numbers are the same, then a single frame of data will be returned. If the starting sequence number is larger than the ending sequence number, then frames will be returned until the sequence number has wrapped around and reached the stopping sequence number. Starting and stopping sequence numbers are expected for all modes of data acquisition – including for DV pulses.
	All

	use_dv
	0x54
	wb, rb
	<dv mode>
	<dv mode>
	Set the dv mode. The Clock Card can return data frames at an internal rate specified by ‘data_rate’, or in response to Data-Valid pulses from the fibre input or in response to packets from the Manchester input. Default = 0.
· dv mode 0: generated by the MCE

· dv mode 1: fibre DV input (labeled as DV_IN on the MCE)

· dv mode 2: fibre Manchester-encoded input (labeled as SYNC_IN on the MCE)

use_sync, use_dv and select_clk must be consistent with each other, otherwise timing artifacts will appear in data. To be consistent, they must either be [0,0,0] or [2,2,1] respectively.
	All

	array_id
	0x58
	rb
	
	<array id>
	Read the identification of the sub-array that a MCE box is positioned for connection to, on the side of the Dewar.
	All

	box_id
	0x59
	rb
	
	<id word 1>
	Read the identification of the sub-rack. Each production sub-rack will have a unique Silicon ID IC mounted on the Bus Backplane.
	All

	sram_data
	0x5C
	wb, rb
	<word 0>

…

<word n>
	<word 0>

…

<word n>
	Read/write a block of 32b data to SRAM at address specified by sram_addr parameter.(see sram_addr)
	4.0.9+

	sram_addr
	0x5E
	wb, rb
	<starting address>
	< starting address>
	Specify the starting address for subsequent read/write operation to the 1024k x 32-bit SRAM. The, physical addresses range between 0x00000000 and 0x000FFFFF.
	4.0.9+

	data_rate
	0xA0
	wb, rb
	<# frame periods per data frame>
	<# frame periods per data frame>
	Specify the rate at which data frames are collected by the MCE if DV pulses are not being used (see “Use DV Pulse”). The rate is specified as the time between data packets measured in frame periods, i.e. a value of 11 will return one data packet every 11 frame periods. A frame period is the amount of time required for the multiplexer to address all the rows on a MUX. Default = 47.
	All

	use_sync
	0xA1
	wb, rb
	<sync mode>
	<sync mode>
	Specify the sync mode. The Clock Card can return to address 0 using its internal timing, or in response to sync pulses from the fibre input or in response to packets from the Manchester input. Default = 0.
· sync mode = 0: generated by the MCE

· sync mode = 1: fibre DV input (labeled as DV_IN on the MCE)

· sync mode = 2: fibre Manchester-encoded input (labeled as SYNC_IN on the MCE)

use_sync, use_dv and select_clk must be consistent with each other, otherwise timing artifacts will appear in data. To be consistent, they must either be [0,0,0] or [2,2,1] respectively.
	All

	select_clk
	0xA2
	wb, rb
	<clock source>
	<clock source>
	Select the source of the clock input to the Clock Card’s PLL. There are two options for this, either the Manchester input clock, or the on-board crystal clock. Both are nominally 25 MHz. Default = 0.
· clock source = 0: generated by the MCE
· clock source = 1: fibre Manchester-encoded input. (labeled as SYNC_IN on the MCE)
Note: when select_clk=1, but the external Manchester Clock disappears, the firmware automatically falls back on the internal clock and reading back select_clk would reflect that as 0.
use_sync, use_dv and select_clk must be consistent with each other, otherwise timing artifacts will appear in data. To be consistent, the must either be [0,0,0] or [2,2,1] respectively.
	All

	upload_fw
	0x50
	wb, rb
	<word 0>

<word 1>

…

<word 58>
	<word 0>

<word 1>

…

<word 58>
	Write data to the JAM player wishbone slave, which will stream the words over the JTAG chain to program a device.
	Not yet implemented

	mce_bclr
	0xAB
	rs
	1
	N/A
	Clear the registers on all the cards in the MCE, including the Clock Card but excluding the PSC.
	3.0.4+

	cc_bclr
	0xAC
	rs
	1
	N/A
	Clear the registers on the Clock Card.
	3.0.4+

	tes_tgl_en
	0xA3
	wb, rb
	1
	<mode>
	Enable or disable a square wave applied to the TES Bias. When this mode is enabled, the Clock Card issues internal commands at timed intervals that toggle the TES Bias output between a low value and a high value.

· mode = 0: Disable TES Bias toggling

· mode = 1: Enable TES Bias toggling
	Until 3.0.8

	tes_tgl_max
	0xA4
	wb, rb
	1
	<high value>
	Specify the ‘high’ value of the TES Bias square wave
	Until 3.0.8

	tes_tgl_min
	0xA5
	wb, rb
	1
	<low value>
	Specify the ‘low’ value of the TES Bias square wave
	Until 3.0.8

	tes_tgl_rate
	0xA6
	wb, rb
	1
	<toggle rate>
	Specify the half-period of the TES Bias square wave, in frame periods
	Until 3.0.8

	int_cmd_en
	0xA7
	wb, rb
	1
	<mode>
	Enable or disable internal housekeeping commands. Default = 0.
· mode = 0: Disable internal commands

· mode = 1: Enable internal commands
	Until 4.0.0

	box_temp
	0xA8
	rb
	1
	<temperature>
	Read the temperature sensor on the Bus Backplane
	All

	crc_err_en
	0xA9
	wb, rb
	1
	<mode>
	Force the value of the CRC field in reply packets from the MCE to the PC. The reply packets will have a CRC checksum value of 0xFFFFFFFF.

· mode = 0: Normal CRC Calculation performed

· mode = 1: CRC word forced to 0xFFFFFFFF
	3.0.1+

	internal_cmd_mode
	0xB0
	wb, rb
	1
	<mode>
	Enable or disable internal housekeeping/ ramping commands. Default = 0.
· mode = 0: Disable internal commands

· mode = 1: Enable Housekeeping commands

· mode = 2: Enable ramp commands

· mode = 3: Enable maximum length sequence (MLS) commands
	4.0.0+

	ramp_step_period
	0xB1
	wb, rb
	<# frame periods>
	<# frame periods>
	Specify the number of frame periods between each ramp step.
	4.0.0+

	ramp_min_val
	0xB2
	wb, rb
	<min value>
	<min value>
	Specify the minimum value of the ramp that is to be applied. Must be less than the ramp_max_value
	4.0.0+

	ramp_step_size
	0xB3
	wb, rb
	<step size in DAC units>
	<step size in DAC units>
	Specify the ramp step size. If (step_size) = [(max) – (min)] then the ramp will be a square wave.
	4.0.0+

	ramp_max_val
	0xB4
	wb, rb
	<max value>
	<max value>
	Specify the maximum value of the ramp that is to be applied. Must be greater than the ramp_min_value
	4.0.0+

	ramp_param_id
	0xB5
	wb, rb
	<parameter id>
	<parameter id>
	Specify the parameter ID of the register to be ramped
	4.0.0+

	ramp_card_addr
	0xB6
	wb, rb
	<card address>
	<card address>
	Specify the card address of the register to be ramped
	4.0.0+

	ramp_step_data_num
	0xB7
	wb, rb
	<number of values to ramp>
	<number of values to ramp>
	Specify the number of data that are to be written per ramp command
	4.0.0+

	config_jtag
	0xAA
	rs
	1
	N/A
	Trigger the configuration of a specific configuration-device over JTAG using a file stored in the SRAM on the Clock Card. The “Configure MCE Device Setup” command must be issued before this one to specify which device the Clock Card’s programmer is to target with the configuration file. Possible devices include the Clock Card’s application configuration device, as well as configuration devices on any other cards (except the Power Supply Card, which has none).
	

	cards_present
	0x5A
	rb
	1
	<cards present>
	Read which cards are present in the MCE. Bits are one-hot encoded, active high:

Bit 9: Address Card

Bit 8: Bias Card 1

Bit 7: Bias Card 2

Bit 6: Bias Card 3

Bit 5: Readout Card 1

Bit 4: Readout Card 2

Bit 3: Readout Card 3

Bit 2: Readout Card 4

Bit 1: Clock Card

Bit 0: PSUC
	4.0.8+

	cards_to_report
	0x5B
	wb, rb
	<cards to report data>
	<cards to report data>
	Specify which cards are present in the MCE subrack, and will return data over the bus backplane (whether real or dummy). This command can be used in situations where certain cards are not present in the subrack, and should not return data in replies. The default value for this register is ‘1’ for every possible card. To stop a card from returning data, set its corresponding bit to ‘0’.

Bit 9: Address Card

Bit 8: Bias Card 1

Bit 7: Bias Card 2

Bit 6: Bias Card 3

Bit 5: Readout Card 1
Bit 4: Readout Card 2

Bit 3: Readout Card 3

Bit 2: Readout Card 4

Bit 1: Clock Card

Bit 0: PSUC
	4.0.a+

	ret_dat_req
	0x5D
	wb, rb
	<1 = enable; 0 = disable>
	<1 = enable; 0 = disable>
	The user can start or stop the data acquisition process on the Clock Card. Not supported yet.
	

	rcs_to_report_data
	0x5F
	wb, rb
	<card address>
	<card address>
	This command is NOT redundant with cards_to_report. It applies only to Readout Cards, and only for data taking (ret_dat) commands. This register sets which Readout Cards return data during a data run. This command allows the selective return of data without affecting which cards respond to all other commands, which is useful if a data run fails.
Bit 9: --

Bit 8: --

Bit 7: --

Bit 6: --

Bit 5: Readout Card 1

Bit 4: Readout Card 2

Bit 3: Readout Card 3

Bit 2: Readout Card 4

Bit 1: --

Bit 0: --
	4.0.a+

	 stop_dly
	0xB8
	wb, rb
	<timed delay>
	<timed delay>
	Specify the time delay between the return of the next data frame and the return of the reply to a stop command. The time specified is in microseconds. This command is used to test the robustness of the PCI card to replies following immediately on the heels of a data packet.
	4.0.a+

	run_id
	0x56
	wb, rb
	<data file name embedded in header>
	<data file name embedded in header>
	Specify an ID number that will be stored in every data packet header returned to the PCs. In ACT, the ID number corresponds to the c-time at which data acquisition began. ACT’s data files are also named by the same c-times, so that the data pipeline can easily track which files the data are from.
	4.0.2+

	user_writable
	0x57
	wb, rb
	<misc data embedded in header>
	<misc data embedded in header>
	Specify a value that will be stored in every data packet header returned to the PCs. This register is used by ACT to store a combination of array_id and data_mode information. At Caltech, it is used during I-V curves to store the value of the TES bias applied.
	4.0.2+

	mls_sequence_len
	0xB9
	wb, rb
	<sequence length>
	<sequence length>
	Specify the length of the MLS sequence that is loaded in RAM. This parameter tells the internal commanding FSM how long the MLS sequence is, and at what index it should restart MLS the sequence.
	5.0.3+

	mls_data
	0xBA
	wb, rb
	<data word 0>

<data word 1>

…

<data word n>
	<data word 0>

<data word 1>

…

<data word n>
	Load the MLS sequence into RAM on the Clock Card. The RAM has 8192 indexes. This may be expanded later if there are enough resources still available on the Clock Card.
	5.0.3+

	mls_addr
	0xBC
	wb, rb
	1
	1
	Specify the starting address for reading from or writing to the MLS RAM. This parameter does not affect the memory address of the internal commanding FSM.
	5.0.3+

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

“ac” Commands

	Parameter ID
	Register Address
	Possible Actions
	Command Parameters
	Reply Data
	Description
	Firmware revision

	row_order
	0x01
	wb, rb
	<1st row>

<2nd row>

…

<41st row>
	<1st row>

<2nd row>

…

<41st row>
	This command is relevant when enbl_mux = 1 or 2. Read/write the row-addressing order. A sequence of up to 41 rows is specified at once. The row numbers that are specified with this command refer to the physical channel numbers on the Address Card. Note: After this command is issued, a “flx_lp_init” command must be issued to all the readout cards to discard previous PID-loop calculations and to clean out the rest of the data pipeline. Default = 0,0,0,…
	All

	on_bias
	0x02
	wb, rb
	<bias row 0>

<bias row 1>

…

<bias row 39>

<bias dark row>
	<bias row 0>

<bias row 1>

…

<bias row 39>

<bias dark row>
	This command is relevant when enbl_mux = 1. Read/write the14-bit on-bias values for all 41 channels of the DACs on the Address Card. Bias values are stored in the order of physical channels on the Address card – which is not necessarily the multiplexing order specified with row_order. This command is nominally is used to specify the 1st Stage SQUID “on” biases, and are applied one at a time in the sequence specified by row_order. Default = 0,0,0,…
	All

	off_bias
	0x03
	wb, rb
	<bias row 0>

<bias row 1>

…

<bias row 39>

<bias dark row>
	<bias row 0>

<bias row 1>

…

<bias row 39>

<bias dark row>
	This command is relevant when enbl_mux = 1. Read/write the 14-bit off-bias values for all 41 channels of the row-addressing DACs on the Address Card. Bias values are stored in the order of physical channels on the Address card – which is not necessarily the multiplexing order specified with row_order. This command is nominally is used to specify the 1st Stage SQUID “off” biases. Default = 0,0,0,…
	All

	enbl_mux
	0x05
	wb, rb
	<mode>
	<mode>
	Start/stop array multiplexing. Default: mode = 0.

· mode = 0: Multiplexing off. This is the default value.
· mode = 1: (changed starting in v2.0.5+) Multiplexing on. The Address Card turns one DAC ‘on’ and one DAC ‘off’ at every row switch. The multiplexed values are specified by on_bias and off_bias. In v2.0.4-, the values were applied starting at row_dly, and done by row_dly+4. Starting in v2.0.5+, the values are applied in the first two clock cycles after a row switch, and row_dly is obsolete.
· mode = 2: Multiplexing on. The Address Card changes the values on all the DACs at every row switch. The multiplexed values are specified by fb_colx. This mode is implemented starting in v2.0.5+. All 41 DAC values are applied in the first 4 clock cycles after a row switch, and row_dly is obsolete.
	All

	bias_start
	0x09
	wb, rb
	<start row 0>

<start row 1>

…

<start row 39>

<start dark row>
	<start row 0>

<start row 1>

…

<start row 39>

<start dark row>
	Applies only when enbl_mux = 1. Specify the point during each row dwell period when the 1st Stage Bias is applied. This is specified on a row-by-row basis so that SCUBA2 can differential bias heating across the rows of their arrays.
	2.0.8; 5.0.1+

	row_dly
	0x35
	wb, rb
	<# clock cycles>
	<# clock cycles>
	This command is obsolete. This command was in use until v2.0.4 for enbl_mux = 1 only. Specify the number of 50MHz clock cycles between the de-assertion of the previous row at a row-switch, and the start of the assertion of the current row on the Address Card (multiplexer). Minimum row_dly is 4. This command is not supported after 2.0.5 version.
	2.0.4-;

	fb_col0

…

fb_col40
	0xC0

…

0xE8

	wb, rb
	<fb_row_0>

<fb_row_1>

…

<fb_row_39>

<fb_row_dark>

	<fb_row_0>

<fb_row_1>

…

<fb_row_39>

<fb_row_dark>

	This command is relevant when enbl_mux = 2. Specifies the 41 multiplexing values for each DAC channel on the Address Card, and for each row that the channel is to multiplex. There are 41 channels on the Address Card, and up to 41 rows per channel that need to be specified. This command was implemented to support using the Address Card to multiplex the 2nd Stage Feedback from a Bias Card slot.
	2.0.5+

	const_mode
	0x06
	wb, rb
	<mode_dac_0>

<mode_dac_1>

…

<mode_dac_39>

<mode_dac_dark>
	<mode_dac_0>

<mode_dac_1>

…

<mode_dac_39>

<mode_dac_dark>
	Specify which DAC channels are held at a constant value regardless of the value of enbl_mux. A constant value is applied once only, and is specified by const_val. In addition, DACs for which const_mode=1 do not receive data strobes during multiplexing – so that there are no glitches or excess noise on the DAC outputs.

· mode_dac_x = 0: this DAC channel is multiplexed when enbl_mux = 1, or enbl_mux = 2, or enbl_mux=3
· mode_dac_x = 1: the corresponding DAC channel is held at a constant value and not strobed when enbl_mux = 1, or enbl_mux = 2.
	2.0.6+

	const_val
	0x07
	wb, rb
	<val_dac_0>

<val_dac_1>

…

<val_dac_39>

<val_dac_dark>
	<val_dac_0>

<val_dac_1>

…

<val_dac_39>

<val_dac_dark>
	Specify values for the DACs that are held constant. <val_dac_n> is asserted by DAC ‘n’ when const_mode[n] = 1. In addition, all constant values are applied to each respective DAC when enbl_mux = 0. When <wb enbl_mux>, <wb const_mode>, <wb const_val> or <wb const_val39> commands are executed, all the DACs that are being held constant have their values re-strobed.

This command was implemented to avoid strobing DACs that are connected to dead rows or columns, while multiplexing the rest. This effectively eliminates the noise in the cryostat associated with strobing DACs.
	2.0.6+

	const_val39
	0x08
	wb, rb
	<val_dac_39>
	<val_dac_39>

	Specify the value that DAC 39 is to be held constant at. This value will be asserted if const_mode[39] = 1, or if enbl_mux = 0. This command was created to allow internal commands to ramp this DAC directly, and to avoid excess strobe noise, because it is connected to the TES Bias in some ACT cryostats.
	2.0.7+

“rc1, rc2, rc3, rc4” Commands

These commands target the Readout Cards only.

	Parameter ID
	Register Address
	Possible Actions
	Command Parameters
	Reply Data
	Description
	Firmware Revision

	sa_bias
	0x10
	wb, rb
	<column 0 SA bias>

<column 1 SA bias>

…

<column 7 SA bias>
	<column 0 SA bias>

<column 1 SA bias>

…

<column 7 SA bias>
	Read/write the SQUID Series Array Bias values for all columns on a Readout Card.
	All

	offset
	0x11
	wb, rb
	<column 0 offset>

<column 1 offset>

…

<column 7 offset>
	<column 0 offset>

<column 1 offset>

…

<column 7 offset>
	Read/write the SQUID Series Array Offset values for all columns on a Readout Card.
	All

	gainp0

gainp1

gainp2

gainp3

gainp4

gainp5

gainp6

gainp7
	0x70

0x71

0x72

0x73

0x74

0x75

0x76

0x77
	wb, rb*
	<column x, gainp 0>

<column x, gainp 1>

…

<column x, gainp 38>

<column x, gainp 39>

<column x, gainp dark>
	<column x, gainp 0>

<column x, gainp 1>

…

<column x, gainp 38>

<column x, gainp 39>

<column x, gainp dark>
	Read/write the Readout Card’s 41 P coefficients for any given column. The <x> in the command moniker refers to which column the values are being specified for, from 0 to 7. The Parameter IDs are listed in order of column, from 0 to 7.

gainp are specified as “signed 10-bit” values as of revision 4.0.2. (These were 8-bit values prior to revision 4.0.2.)
	All *

	gaini0

gaini1

gaini2

gaini3

gaini4

gaini5

gaini6

gaini7
	0x78

0x79

0x7A

0x7B

0x7C

0x7D

0x7E

0x7F
	wb, rb*
	<column x, gaini 0>

<column x, gaini 1>

…

<column x, gaini 38>

<column x, gaini 39>

<column x, gaini dark>
	<column x, gaini 0>

<column x, gaini 1>

…

<column x, gaini 38>

<column x, gaini 39>

<column x, gaini dark>
	Read/write the Readout Card’s 41 I coefficients for any given column. The <x> in the command moniker refers to which column the values are being specified for, from 0 to 7. The Parameter IDs are listed in order of column, from 0 to 7.

gaini are specified as “signed 10-bit” values as of revision 4.0.2. (These were 8-bit values prior to revision 4.0.2.)
	All *

	flx_quanta0

flx_quanta1

flx_quanta2

flx_quanta3

flx_quanta4

flx_quanta5

flx_quanta6

flx_quanta7
	0x80

0x81

0x82

0x83

0x84

0x85

0x86

0x87
	wb, rb
	<column x, quanta 0>

<column x, quanta 1>

…

<column x, quanta 38>

<column x, quanta 39>

<column x, quanta drk>
	<column x, quanta 0>

<column x, quanta 1>

…

<column x, quanta 38>

<column x, quanta 39>

<column x, quanta drk>
	Read/write the Readout Card’s 41 Flux Quanta values for any given column. The Flux Quanta are used to calculate the 1st Stage Feedback value. The <x> in the command moniker refers to which column the values are being specified for, from 0 to 7. The Parameter IDs are listed in order of column, from 0 to 7.
	All

	gaind0

gaind1

gaind2

gaind3

gaind4

gaind5

gaind6

gaind7
	0x88

0x89

0x8A

0x8B

0x8C

0x8D

0x8E

0x8F
	wb, rb*
	<column x, gaind 0>

<column x, gaind 1>

…

<column x, gaind 38>

<column x, gaind 39>

<column x, gaind dark>
	<column x, gaind 0>

<column x, gaind 1>

…

<column x, gaind 38>

<column x, gaind 39>

<column x, gaind dark>
	Read/write the Readout Card’s 41 D coefficients for any given column. The <x> in the command moniker refers to which column the values are being specified for, from 0 to 7. The Parameter IDs are listed in order of column, from 0 to 7.

gaind are specified as “signed 10-bit” values as of revision 4.0.2. (These were 8-bit values prior to revision 4.0.2.)
	All *

	adc_offset0

adc_offset1

adc_offset2

adc_offset3

adc_offset4

adc_offset5

adc_offset6

adc_offset7
	0x68

0x69

0x6A

0x6B

0x6C

0x6D

0x6E

0x6F
	wb, rb
	<column x, offset 0>

<column x, offset 1>

…

<column x, offset 38>

<column x, offset 39>

<column x, offset dark>
	<column x, offset 0>

<column x, offset 1>

…

<column x, offset 38>

<column x, offset 39>

<column x, offset dark>
	Read/write the Readout Card’s 41 ADC Offsets for any given column. The ADC Offset coefficients are used to digitally offset each 50 MHz ADC sample on the Readout Cards. The offset is subtracted from each 50 MHz ADC sample before being co-added. The <x> in the command moniker refers to which column the values are being specified for, from 0 to 7. The Parameter IDs are listed in order of column, from 0 to 7.
	All

	readout_row_index
	0x13
	wb, rb
	<starting row index>
	<starting row index>
	Specify the starting row index of data to be returned in a data block. Default = 0. Note: if num_rows_reported > num_rows – readout_row_index – 1, then the readout row index will wrap accordingly to 0 during readout.
	Starting 4.0.0

	ret_dat
	0x16
	go, st
	<1 = return frames>
	
	Request data frames. Prior to a ret_dat command, the Clock Card expects a “ret_dat_s” command to set up how many frames are to be collected and what sequence numbers to assign. Following that, a single “ret_dat” command triggers the return of n frames of data.
	All

	fltr_rst
	0x14
	wb, rb
	<1 = reset filter pipeline>
	<1 = reset filter pipeline>
	Reset the filter data pipeline on the Readout Cards. The flx_lp_init command automatically triggers an fltr_rst.
	All

	en_fb_jump
	0x15
	wb, rb
	<1 = enable flux jumping>
	<1 = enable flux jumping>
	Enable/disable flux jumping on the Readout Cards. The size of flux jumps is specified by the ‘flux_quanta’ command.
	All

	data_mode
	0x17
	wb, rb
	<data mode>
	<data mode>
	Specify the pixel-data read out mode. This determines whether the coadded-error, the first-stage feedback, the filtered feedback, the flux-jump counter, or some combination of the above would be read. (Consult readout card description document [8] for updated info and windowing information of each mode.)

Some of the available modes are:

· Data mode 0: Signed 32-bit co-added error data: error[31:0]
· Data mode 1: signed 32-bit first-stage feedback data (fb) , when servo_mode=3 this is PID calculation result and the actual value applied to the DAC is fbDAC=fb/212: fb[31:0]
· Data mode 2: signed 32-bit low-pass filtered first-stage feedback data: fltr[31:0]
· Data mode 3: raw data sampled at 50MHz (see captr_raw command): raw[13:0]
· Data mode 4: mixed data: 18b SQ1_fb + 14b coadded error: fb[31] & fb[28:12] & coadd[31] & coadd[12:0]
· Data mode 5: mixed data: 24b SQ1_fb + 8b flux-jump counter: fb[31:8] & fj[7:0]
· Data mode 6: mixed data: 18b filtered fb + 14b coadded error: fltr[31] & fltr[27:11] & error[31] & error[12:0]
· Data mode 7: mixed data: 22b filtered fb + 10b coadded error: fltr[31] & fltr[27:7] & error[31] & error[12:4]
· Data mode 8: mixed data: 24b filtered fb + 8b flux-jump counter: fltr[31:8] & fj[7:0]
· Data mode 9: mixed data: 24b filtered fb + 8b flux-jump counter: fltr[31] & fltr[23:1] & fj[7:0]
· Data mode 10: mixed data: 25b filtered fb + 7b flux-jump counter: fltr[27:3] & fj[6:0]

· Data mode 11: pixel addresses: 6 bits of row index + 3 bits of column index: row[8:3] & col[2:0]
	See Description Pane (Left)
0: All
1: All
2: 1.4.1+
3: Special Req.
4: All
5: All

6: 3.0.30 – 4.0.6
7: 4.0.2+
8: 4.0.4 only
9: 4.0.5 – 4.0.a
10: 4.0.b+

11: 5.0.0+

	captr_raw
	0x18
	wb, rb
	<1 = capture data>
	N/A
	Initiates taking a snap-shot of 50MHz ADC samples for 2 consecutive frames and storing them in raw-mode buffer on the Readout Card. This command is only available in special builds of firmware. (In 4.3.7, the raw-buffer is 14-bit wide which amounts to storing full-resolution 50MHz ADC samples.)
	3.0.19, 4.1.7, 4.2.7, 4.3.7
Only

	servo_mode
	0x1B
	wb, rb
	<column 0>
…..

<column 7>
	<column 0>

….

<column 7>
	Set the servo on the Readout Cards. Servo modes include:

· Servo mode 0 or 1: constant feedback mode as specified by fb_const parameter

· Servo mode 2: ramp mode
· Servo mode 3: PID-loop lock mode (servo parameters vary depending on firmware build)
	All

	ramp_dly
	0x1C
	wb, rb
	<# frames>
	<# frames>
	Specify the number of frame-periods before the next step in a ramp function. This delay can be tuned to the data-frame readout rate (data_rate), so that one frame of data is read out per ramp step.
	All

	ramp_amp
	0x1D
	wb, rb
	<ramp amplitude>
	<ramp amplitude>
	Specify the maximum ramp value, in 14-bits
	All

	ramp_step
	0x1E
	wb, rb
	<ramp step size>
	<ramp step size>
	Specify what the step size of each step in the ramp is, max 14-bit
	All

	fb_const
	0x1F
	wb, rb
	<col0>

<col1>

<col2>

<col3>

<col4>

<col5>

<col6>

<col7>
	<col0>

<col1>

<col2>

<col3>

<col4>

<col5>

<col6>

<col7>
	Specify the constant feedback DAC value for a specific column when the servo is in constant mode (see servo_mode). Applied to SQ1_FB. Max =14-bit (-8192 to 8191). The constant value is applied to the Readout Card DAC repetitively for every new row. (
	All

	sample_dly
	0x32
	wb, rb
	<# clock cycles>
	<# clock cycles>
	Specify the number of 50MHz clock cycles from the start of a row during which samples do not contribute to a co-added value on the Readout Cards
	All

	sample_num
	0x33
	wb, rb
	<# samples>
	<# samples>
	Specify the number of 50MHz samples co-added during a row-period on the Readout Cards. Co-addition begins after the sample delay, and one value is co-added per 50MHz clock cycle.

Note that default is 0 and therefore you need to explicitly set this parameter.
	All

	fb_dly
	0x34
	wb, rb
	<# clock cycles>
	<# clock cycles>
	Specify the number of 50MHz clock-cycles between the start of a row and the assertion of the row’s feed-back value on the Readout Cards. (minimum is 7 with flux-jumping off and 18 when flux-jumping is on)
	All

	flx_lp_init
	0x37
	wb, rb
	<1 = initialize>
	 N/A
	Initialize/reset the PID loop calculations on the Readout Cards for new PID parameters to take effect.
	All

	filt_coef
	0x1A
	wb, rb
	<coefficient 1>

…

<coefficient n>
	<coefficient 1>

…

<coefficient n>
	Specify coefficients for low-pass filter. (not implemented)
	none

	readout_col_index
	0x19
	wb, rb
	<starting column index>
	<starting column index>
	Specify the starting column index of data to be returned in a data block. Default = 0. Note: if num_cols_reported > num_cols – readout_col_index – 1, then the readout column index will wrap accordingly to 0 during readout. During raw readout, this parameter specifies the index of the column for which raw data is stored.
	

	readout_priority
	0x67
	wb, rb
	<priority>
	<priority>
	Specify whether readout should be column-major or row-major. Default = 0.
· Priority 0: Data readout is in row-major order – all the pixels in a row are read out before moving on to the next row.

· Priority 1: Data readout is in column-major order – all the pixels in a column are read out before moving on to the next column.
	5.0.0+

	i_clamp_val
	0x66
	wb, rb
	<clamp_value>
	<clamp_value>
	Specify the maximum value of the integral term before it is multiplied by the integral coefficient. This register specifies the maximum absolute value of the integral term that is allowed, and clamps the integral term at this value if it is exceeded. This prevents unlocked pixels from wrapping continuously in lock mode and mitigates the adverse effects of this on locked pixels. The value of this register is different for each experiment and depends on the integral coefficient, and flux quanta size. The formula for determining an appropriate value is:

· i_clamp_val < {[220] * [min_flx_quanta]} / [max_i_coeff]

	5.0.9+

*In Pre-4.0.e firmware that has raw-mode enabled read back of gaini, gainp, gaind parameters is disabled to save memory for raw mode.
“bc1, bc2, bc3” Commands

These commands are for Bias Cards only. Dark-shaded rows indicate commands that remain to be implemented as of 2008-05-16.

	Parameter ID
	Register Address
	Possible Actions
	Command Parameters
	Reply Data
	Description
	Firmware revision

	flux_fb
	0x20
	wb, rb
	<flux fb, column 0>

<flux fb, column 1>

…

<flux fb, column 31>
	<flux fb, column 0>

<flux fb, column 1>

…

<flux fb, column 31>
	Specify the flux feedback for all 32 16-bit DAC channels on the Bias Cards.
In MCEv1, the nominal mappings are:
· Bias Card 1 ↔ SQUID Series Array Feedback (32 channels),
· Bias Card 2 ↔ 2nd Stage SQUID Feedback (32 channels),
· Bias Card 3 ↔ 2nd Stage SQUID Bias (32 channels).
In MCEv2, the nominal mappings are:

· Bias Card 1 ↔ SQUID Series Array Feedback (lower 16 channels),
· Bias Card 1 ↔ 2nd Stage SQUID Bias (upper 16 channels),
· Bias Card 2 ↔ 2nd Stage SQUID Feedback (lower 16 channels),

· Bias Card 3 ↔ TES Bias (lower 16 channels).
	All

	bias
	0x21
	wb, rb
	<bias value>
	<bias value>
	Read/Write the low-noise LVDS 16-bit DACs that are typically used to supply TES bias or pixel heater currents. The nominal mappings are: Bias Card 1 ↔ Pixel Heater, Bias Card 2 ↔ TES Bias.
	All

	flux_fb_upper
	0x24
	Wb,rb
	<flux fb, column 16>

<flux fb, column 17>

…

<flux fb, column 31>
	<flux fb, column 16>

<flux fb, column 17>

…

<flux fb, column 31>
	Specify the flux feedback for 16 upper 16-bit DACs, i.e. channel 16 to 31 on bias cards. This command was implemented to match the cryostat wiring for the MCEv2 subracks, which use the upper 16 channels of BC1 to supply the SQ2 Bias.
	1.4.0 +

	sa_htr0
	0x22
	wb, rb
	<heater value>
	<heater value>
	Read/write a from/to the Series Array Heather channel 0. This is used to release trapped flux from the Series Array Modules.
	None

	sa_htr1
	0x23
	wb, rb
	<heater value>
	<heater value>
	Read/write a heater value from/to the Series Array Heather channel 1. This is used to release trapped flux from the Series Array Modules.
	None

SC2_ELE_S580_515_Rev1.6_mce_command_description.doc
Page 1 of 17

_1248783156.vsd
Row 1�

Row (num_rows-1)�

MUX Row �1' On�

��

row_len
�

MUX Off�

MUX Row �0� On�

row_dly
min=4�

sample_dly
min=0�

sample_num
min=0�

fb_dly
min=7�

Readout Card Not Sampling�

Readout Card Sampling�

�

1st Stage FB For
Row �num_rows-1��

1st Stage FB For
Row �0��

Row 0�

MUX Off�

MUX Row �num_rows-1� Selected�

MUX Off�

Readout Card Not Sampling�

Readout Card Sampling�

�

Readout Card Not Sampling�

Readout Card Sampling�

�

1st Stage FB For
Row �1��

1st Stage FB For
Row �num_rows-1��

One Frame Period�

Sync Pulse�

Sync Pulses occur in the 50 MHz clock cycle preceding the start of a new frame period
�

1st Stage FB For
Row �num_rows-2��

